Overdetermined elliptic problems and a conjecture of Berestycki, Caffarelli and Nirenberg.

David Ruiz
Joint work with A. Ros and P. Sicbaldi (U. Granada)
Belgium+Italy+Chile Conference in PDE's, November 2017

Outline

(2) The two dimensional case
(3) Exterior domains

The problem

We say that a smooth domain $\Omega \subset \mathbb{R}^{N}$ is extremal if the following problem admits a bounded solution:

$$
\begin{cases}\Delta u+f(u)=0 & \text { in } \Omega \tag{1}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ \frac{\partial u}{\partial \nu}=c<0 & \text { on } \partial \Omega\end{cases}
$$

Here $\nu(x)$ is the exterior normal vector to $\partial \Omega$ at x, and f is a Lipschitz function.
Extremal domains arise naturally in many different problems: shape optimization, free boundary problems and obstacle problems.

The problem

We say that a smooth domain $\Omega \subset \mathbb{R}^{N}$ is extremal if the following problem admits a bounded solution:

$$
\begin{cases}\Delta u+f(u)=0 & \text { in } \Omega \tag{1}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ \frac{\partial u}{\partial \nu}=c<0 & \text { on } \partial \Omega\end{cases}
$$

Here $\nu(x)$ is the exterior normal vector to $\partial \Omega$ at x, and f is a Lipschitz function.
Extremal domains arise naturally in many different problems: shape optimization, free boundary problems and obstacle problems.

If Ω is a bounded extremal domain, then it is a ball and u is radially symmetric.
\square J. Serrin, 1971.

The BCN Conjecture

The case of unbounded domains was first treated by Berestycki, Caffarelli and Nirenberg in 1997.

They show that the domain must be a half-plane under assumptions of asymptotic flatness of the domain.

In that paper they proposed the following conjecture:

The BCN Conjecture

The case of unbounded domains was first treated by Berestycki, Caffarelli and Nirenberg in 1997.

They show that the domain must be a half-plane under assumptions of asymptotic flatness of the domain.

In that paper they proposed the following conjecture:

- If Ω is a extremal domain and $\mathbb{R}^{n} \backslash \bar{\Omega}$ is connected, then Ω is either a ball B^{n}, a half-space, a generalized cylinder $B^{k} \times \mathbb{R}^{n-k}$, or the complement of one of them.
H. Berestycki, L. Caffarelli and L. Nirenberg, 1997.

The BCN conjecture is false for $N \geq 3$!

This conjecture was disproved for $N \geq 3$ by P. Sicbaldi: he builds extremal domains obtained as a periodic perturbation of a cylinder (for $f(t)=\lambda t)$.
围 P. Sicbaldi, 2010.
囲 F. Schlenk and P. Sicbaldi, 2011

This construction works also for $N=2$, but in this case $\mathbb{R}^{2} \backslash \Omega$ is not connected.

Overdetermined problems and CMC surfaces

A formal analogy with constant mean curvature surfaces has been observed:

- Serrin's result is the counterpart of Alexandrov's one on CMC hypersurfaces.
- Sicbaldi example has a natural analogue in the Delaunay CMC surface.

Overdetermined problems and CMC surfaces

A formal analogy with constant mean curvature surfaces has been observed:

- Serrin's result is the counterpart of Alexandrov's one on CMC hypersurfaces.
- Sicbaldi example has a natural analogue in the Delaunay CMC surface.

Other extremal domains have been built for f of Allen-Cahn type $\left(f(u)=u-u^{3}\right)$, with

- $\partial \Omega$ close to a dilated embedded minimal surface in \mathbb{R}^{3} with finite total curvature and nondegenerate.
- $\partial \Omega$ close to a dilated Delaunay surface in \mathbb{R}^{3}.
\square M. Del Pino, F. Pacard and J. Wei, 2015.

Overdetermined problems and the De Giorgi conjecture

The case of nonlinearities of Allen-Cahn type has been considered in many papers, in relation with the well-known De Giorgi conjecture.
H. Berestycki, L. Caffarelli and L. Nirenberg, 1997.
A. Farina and E. Valdinoci, 2010.

Overdetermined problems and the De Giorgi conjecture

The case of nonlinearities of Allen-Cahn type has been considered in many papers, in relation with the well-known De Giorgi conjecture.
H. Berestycki, L. Caffarelli and L. Nirenberg, 1997.
A. Farina and E. Valdinoci, 2010.

A extremal domain has been built with boundary close to the Bombieri-De Giorgi-Giusti minimal graph if $N=9$. In this example, u is monotone.
目 M. Del Pino, F. Pacard and J. Wei, 2015.
These solutions do not exist if $N \leq 8$.
國 K. Wang and J. Wei, 2017.

Other cases have been studied recently:
(1) The harmonic case $f=0$: Alt, Caffarelli, Hauswirth, Helein, Pacard, Traizet, Jerison, Savin, Kamburov, De Silva, Liu, Wang, Wei...
(2) Overdetermined problems on manifolds: Espinar, Farina, Mazet, Mao, Fall, Sicbaldi...

The BCN conjecture in dimension 2

In case $N=2$ ，there are some previous results：
－If u is monotone and ∇u is bounded，then Ω is a half－plane．
呞 A．Farina and E．Valdinoci， 2010.
－If Ω is contained in a half－plane and ∇u is bounded，then the BCN conjecture holds．
R．Ros and P．Sicbaldi， 2013.
－If $\partial \Omega$ is a graph and f is of Allen－Cahn type，then Ω is a half－plane．
圊 K．Wang and J．Wei，preprint．
－If u is a stable solution（in a certain sense），then Ω is a half－plane．
國 K．Wang，preprint．

A rigidity result in dimension 2

Theorem
If $N=2$ and $\partial \Omega$ is connected and unbounded, then Ω is a half-plane.
R. Ros, D.R and P. Sicbaldi, 2017.

Exterior domains

The only remaining case in dimension 2 is that of exterior domains.
Under some restrictions on f and/or u, a exterior extremal domain must be the exterior of a ball:
A. Aftalion and J. Busca, 1998.

國 W. Reichel, 1997.
圊
B. Sirakov, 2001.

For instance, the conjecture is true for exterior domains if $f(u)=u-u^{3}$, or if $f=0$.

Exterior domains

The only remaining case in dimension 2 is that of exterior domains.
Under some restrictions on f and/or u, a exterior extremal domain must be the exterior of a ball:
A. Aftalion and J. Busca, 1998.
W. Reichel, 1997.

圊
B. Sirakov, 2001.

For instance, the conjecture is true for exterior domains if $f(u)=u-u^{3}$, or if $f=0$.

All those results are based on the moving plane technique from infinity. Hence the solution is radially symmetric and monotone along the radius.

Exterior domains

Our initial observation is: there are radial solutions which are not monotone! Indeed, for any $p>1$, the Nonlinear Schrödinger equation:

$$
\begin{cases}-\Delta u+u-u^{p}=0, u>0 & \text { in } B_{R}^{c} \tag{2}\\ u=0 & \text { on } \partial B_{R}\end{cases}
$$

admits nonmonotone radial solutions for any $R>0$.

Exterior domains

Our initial observation is: there are radial solutions which are not monotone! Indeed, for any $p>1$, the Nonlinear Schrödinger equation:

$$
\begin{cases}-\Delta u+u-u^{p}=0, u>0 & \text { in } B_{R}^{c} \tag{2}\\ u=0 & \text { on } \partial B_{R}\end{cases}
$$

admits nonmonotone radial solutions for any $R>0$.

We will use these solutions to build a counterexample to the BCN conjecture by a local bifurcation argument.

A counterexample in exterior domains

Theorem
Let $N \in \mathbb{N}, N \geq 2, p \in\left(1, \frac{N+2}{N-2}\right)$. Then there exist bounded domains \mathcal{D} different from a ball such that the overdetermined problem:

$$
\begin{cases}-\Delta u+u-u^{p}=0, u>0 & \text { in } \mathcal{D}^{c} \tag{3}\\ u=0 & \text { on } \partial \mathcal{D} \\ \frac{\partial u}{\partial \nu}=\text { cte } & \text { on } \partial \mathcal{D}\end{cases}
$$

admits a bounded solution.

A counterexample in exterior domains

Theorem

Let $N \in \mathbb{N}, N \geq 2, p \in\left(1, \frac{N+2}{N-2}\right)$. Then there exist bounded domains \mathcal{D} different from a ball such that the overdetermined problem:

$$
\begin{cases}-\Delta u+u-u^{p}=0, u>0 & \text { in } \mathcal{D}^{c} \tag{3}\\ u=0 & \text { on } \partial \mathcal{D} \\ \frac{\partial u}{\partial \nu}=\text { cte } & \text { on } \partial \mathcal{D}\end{cases}
$$

admits a bounded solution.

- In particular, we answer negatively to the BCN conjecture for $N=2$.
- The hypothesis " $\partial \Omega$ unbounded" is essential in our previous work.
- Those solutions are unstable.

We need symmetry!

We denote by $\mu_{i}=i(i+N-2)$ the eigenvalues of $\Delta_{\mathbb{S}^{N-1}}$, and $\tilde{\mu}_{i}$ the subset of eigenvalues for G-symmetric eigenfunctions.

We choose a symmetry group $G \subset O(N)$, so that:
(1) $\tilde{\mu}_{1}>\mu_{1}$. In particular, G excludes the effect of translations.
(2) Its multiplicity \tilde{m}_{1} is odd.

We need symmetry!

We denote by $\mu_{i}=i(i+N-2)$ the eigenvalues of $\Delta_{\mathbb{S}^{N-1}}$, and $\tilde{\mu}_{i}$ the subset of eigenvalues for G-symmetric eigenfunctions.

We choose a symmetry group $G \subset O(N)$, so that:
(1) $\tilde{\mu}_{1}>\mu_{1}$. In particular, G excludes the effect of translations.
(2) Its multiplicity \tilde{m}_{1} is odd.

Some examples:

- If $G=O(m) \times O(N-m), \tilde{\mu}_{1}=\mu_{2}$ and $\tilde{m}_{1}=1$.

We need symmetry!

We denote by $\mu_{i}=i(i+N-2)$ the eigenvalues of $\Delta_{\mathbb{S}^{N-1}}$, and $\tilde{\mu}_{i}$ the subset of eigenvalues for G-symmetric eigenfunctions.

We choose a symmetry group $G \subset O(N)$, so that:
(1) $\tilde{\mu}_{1}>\mu_{1}$. In particular, G excludes the effect of translations.
(2) Its multiplicity \tilde{m}_{1} is odd.

Some examples:

- If $G=O(m) \times O(N-m), \tilde{\mu}_{1}=\mu_{2}$ and $\tilde{m}_{1}=1$.
- If $N=2$ and G is the dihedral group \mathbb{D}_{k}, then $\tilde{\mu}_{1}=\mu_{k}$ and $\tilde{m}_{1}=1$.
- If $N=3$ we can take G as the group of isometries of:
the tetrahedron ($\tilde{\mu}_{1}=\mu_{3}$ and $\tilde{m}_{1}=1$), the octahedron ($\tilde{\mu}_{1}=\mu_{4}$ and $\tilde{m}_{1}=1$), the icosahedron ($\tilde{\mu}_{1}=\mu_{6}$ and $\tilde{m}_{1}=1$).

國 O. Laporte, 1948.

Known facts about the Dirichlet problem

Denote by B_{R} the ball of radius R. Then, the problem

$$
\begin{cases}-\Delta u+u-u^{p}=0, u>0 & \text { in } B_{R}^{c}, \tag{4}\\ u=0 & \text { on } \partial B_{R},\end{cases}
$$

admits a unique radial solution u_{R} for any $p>1$.

Known facts about the Dirichlet problem

Denote by B_{R} the ball of radius R. Then, the problem

$$
\begin{cases}-\Delta u+u-u^{p}=0, u>0 & \text { in } B_{R}^{c}, \tag{4}\\ u=0 & \text { on } \partial B_{R},\end{cases}
$$

admits a unique radial solution u_{R} for any $p>1$.
Moreover, u_{R} is nondegenerate and has Morse index 1 in the radial setting. In other words, the eigenvalue problem

$$
\begin{cases}-\Delta \phi+\phi-p u_{R}^{p-1} \phi=\tau \phi & \text { in } B_{R}^{c}, \tag{5}\\ \phi=0 & \text { on } \partial B_{R} .\end{cases}
$$

has no 0 eigenvalue and just one negative one in $H_{0, r}^{1}\left(B_{R}^{c}\right)$.
We denote $z_{R} \in H_{0, r}^{1}\left(B_{R}^{c}\right)$ the eigenfunction with negative eigenvalue.
囯 P. Felmer, S. Martínez and K. Tanaka, 2008.
围
M. Tang, 2003.

Do we still have nondegeneracy if we drop radial symmetry?

Do we still have nondegeneracy if we drop radial symmetry?
The answer is no. Indeed, one can show that

$$
i\left(u_{R}\right) \rightarrow+\infty \text { as } R \rightarrow+\infty
$$

where $i\left(u_{R}\right)$ denotes its Morse index in $H_{0, G}^{1}\left(B_{R}^{c}\right)$.

Do we still have nondegeneracy if we drop radial symmetry?
The answer is no. Indeed, one can show that

$$
i\left(u_{R}\right) \rightarrow+\infty \text { as } R \rightarrow+\infty
$$

where $i\left(u_{R}\right)$ denotes its Morse index in $H_{0, G}^{1}\left(B_{R}^{c}\right)$.

Lemma

The Dirichlet problem is nondegenerate in $H_{0, G}^{1}\left(B_{R}^{c}\right)$ for small R.
The proof of this Lemma is postponed.
Then the Dirichlet problem is nondegenerate for $R \in\left(0, R_{0}\right)$, where R_{0} is the maximal value for that.

The nonlinear Dirichlet-to-Neumann operator

Fix $R \in\left(0, R_{0}\right)$. Given a function $w: \mathbb{S}^{N-1} \longmapsto(0, \infty)$, let us denote B_{w} its radial graph,

$$
B_{w}:=\left\{x \in \mathbb{R}^{N} \quad|x|<w(x /|x|)\right\} .
$$

By the Inverse Function Theorem, for all $v \in C_{G}^{2, \alpha}\left(\mathbb{S}^{N-1}\right)$ small, there exists a positive solution $u=u(R, v)$ to the problem

$$
\left\{\begin{aligned}
-\Delta u+u-u^{p} & =0 \quad \text { in } B_{R+v}^{c} \\
u & =0 \quad \text { on } \quad \partial B_{R+v}
\end{aligned}\right.
$$

By the Inverse Function Theorem, for all $v \in C_{G}^{2, \alpha}\left(\mathbb{S}^{N-1}\right)$ small, there exists a positive solution $u=u(R, v)$ to the problem

$$
\left\{\begin{aligned}
-\Delta u+u-u^{p} & =0 \quad \text { in } \quad B_{R+v}^{c} \\
u & =0 \quad \text { on } \quad \partial B_{R+v}
\end{aligned}\right.
$$

We define the Dirichlet-to-Neumann operator:

$$
F(R, v)=\frac{\partial u}{\partial \nu}-\frac{1}{\left|\partial B_{R+\nu}\right|} \int_{\partial B_{R+v}} \frac{\partial u}{\partial \nu} d x,
$$

Clearly, we are done if we prove the existence of nontrivial solutions of the equation $F(R, v)=0$. From now on, we assume that v has 0 mean.
A necessary condition for bifurcation is that $D_{v} F(R, 0)$ becomes degenerate.

Degeneracy of the linearized operator

$D_{v} F(R, 0)$ is degenerate at a point $(R, 0)$ if there exists $\psi \neq 0$ such that:

$$
\begin{cases}-\Delta \psi+\psi-p u_{R}^{p-1} \psi=0 & \text { in } B_{R}^{c} \tag{6}\\ \frac{\partial \psi}{\partial \nu}(x)-\frac{N-1}{R} \psi(x)=0 & \text { on } \partial B_{R}\end{cases}
$$

with

$$
\int_{\partial B_{R}} \psi=0
$$

Degeneracy of the linearized operator

$D_{v} F(R, 0)$ is degenerate at a point $(R, 0)$ if there exists $\psi \neq 0$ such that:

$$
\begin{cases}-\Delta \psi+\psi-p u_{R}^{p-1} \psi=0 & \text { in } B_{R}^{c} \tag{6}\\ \frac{\partial \psi}{\partial \nu}(x)-\frac{N-1}{R} \psi(x)=0 & \text { on } \partial B_{R}\end{cases}
$$

with

$$
\int_{\partial B_{R}} \psi=0 .
$$

Multiplying by z and integrating by parts,

$$
\int_{B_{R}^{c}} \psi z_{R}=0
$$

The quadratic form

The associated quadratic form is $Q=Q_{R}: E \rightarrow \mathbb{R}$,

$$
\begin{aligned}
Q(\psi) & =\int_{B_{R}^{c}}\left(|\nabla \psi|^{2}+\psi^{2}-p u_{R}^{p-1} \psi^{2}\right)-\frac{N-1}{R} \int_{\partial B_{R}} \psi^{2}, \\
E & =\left\{\psi \in H_{G}^{1}\left(B_{R}^{c}\right), \int_{\partial B_{R}} \psi=0, \int_{B_{R}^{c}} \psi z_{R}=0\right\} .
\end{aligned}
$$

The quadratic form

The associated quadratic form is $Q=Q_{R}: E \rightarrow \mathbb{R}$,

$$
\begin{aligned}
Q(\psi) & =\int_{B_{R}^{c}}\left(|\nabla \psi|^{2}+\psi^{2}-p u_{R}^{p-1} \psi^{2}\right)-\frac{N-1}{R} \int_{\partial B_{R}} \psi^{2}, \\
E & =\left\{\psi \in H_{G}^{1}\left(B_{R}^{c}\right), \int_{\partial B_{R}} \psi=0, \int_{B_{R}^{c}} \psi z_{R}=0\right\} .
\end{aligned}
$$

Let us denote $Q_{0}=\left.Q\right|_{E_{0}}$ the quadratic form of the Dirichlet problem,

$$
E_{0}=\left\{\psi \in H_{0, G}^{1}\left(B_{R}^{c}\right), \int_{B_{R}^{c}} \psi z_{R}=0\right\} .
$$

The quadratic form

The associated quadratic form is $Q=Q_{R}: E \rightarrow \mathbb{R}$,

$$
\begin{aligned}
Q(\psi) & =\int_{B_{R}^{c}}\left(|\nabla \psi|^{2}+\psi^{2}-p u_{R}^{p-1} \psi^{2}\right)-\frac{N-1}{R} \int_{\partial B_{R}} \psi^{2}, \\
E & =\left\{\psi \in H_{G}^{1}\left(B_{R}^{c}\right), \int_{\partial B_{R}} \psi=0, \int_{B_{R}^{c}} \psi z_{R}=0\right\} .
\end{aligned}
$$

Let us denote $Q_{0}=\left.Q\right|_{E_{0}}$ the quadratic form of the Dirichlet problem,

$$
E_{0}=\left\{\psi \in H_{0, G}^{1}\left(B_{R}^{c}\right), \int_{B_{R}^{c}} \psi z_{R}=0\right\} .
$$

Proposition

If R is sufficiently small, then Q is positive definite in E.
This result gives us a spectral gap where there is no bifurcation.
Moreover, it shows that the Dirichlet problem is nondegenerate for small R.

Sketch of the proof

The proof is by contradiction; take $R=R_{n} \rightarrow 0, B_{n}=B_{R_{n}}, u_{n}=u_{R_{n}}$ and $z_{n}=z_{R_{n}}$.
We first prove that $u_{n} \rightarrow U$ and $z_{n} \rightarrow Z$ in H^{1} sense, where U is the groundstate of:

$$
-\Delta U+U=U^{p} \quad \text { in } \mathbb{R}^{N}
$$

and Z is the positive radial solution of

$$
-\Delta Z+Z-p U^{p-1} Z=\tau Z \quad \text { in } \mathbb{R}^{N}
$$

with $\tau<0$. This is the only point where the assumption $p<\frac{N+2}{N-2}$ is required.

Assume by contradiction that there exist normalized solutions $\psi_{n} \in E$ of:

$$
\begin{cases}-\Delta \psi_{n}+\psi_{n}-p u_{n}^{p-1} \psi=\chi_{n} \psi & \text { in } B_{n}^{c}, \\ \frac{\partial \psi_{n}}{\partial \eta}-\frac{N-1}{R_{n}} \psi_{n}=0 & \text { on } \partial B_{n},\end{cases}
$$

with $\chi_{n} \leq 0$.
Hence there exists $\psi_{0} \in H^{1}\left(\mathbb{R}^{N}\right)$ such that $\psi_{n} \rightharpoonup \psi_{0}$ in $H^{1}\left(B_{r}^{c}\right)$, for any $r>0$.

$$
\psi_{0} \neq 0 ?
$$

Recall the expression of the quadratic form:

$$
Q(\psi)=\int_{B_{R}^{c}}\left(|\nabla \psi|^{2}+\psi^{2}-p u_{R}^{p-1} \psi^{2}\right)-\frac{N-1}{R} \int_{\partial B_{R}} \psi^{2},
$$

We need to control the boundary term with the Dirichlet energy:

Recall the expression of the quadratic form:

$$
Q(\psi)=\int_{B_{R}^{c}}\left(|\nabla \psi|^{2}+\psi^{2}-p u_{R}^{p-1} \psi^{2}\right)-\frac{N-1}{R} \int_{\partial B_{R}} \psi^{2},
$$

We need to control the boundary term with the Dirichlet energy:

Lemma

The following inequality holds:

$$
\frac{1}{R} \int_{\partial B_{R}} \psi^{2} \leq \frac{1}{N} \int_{B_{R}^{c}}|\nabla \psi|^{2},
$$

for any $\psi \in H_{G}^{1}\left(B_{R}^{c}\right)$ with $\int_{\partial B_{R}} \psi=0$.
Here the G-symmetry is needed!

In the limit, $\psi_{0} \neq 0$ is a solution of:

$$
-\Delta \psi_{0}+\psi_{0}-p U^{p-1} \psi_{0}=\chi_{0} \psi_{0} \text { in } \mathbb{R}^{N} \backslash\{0\},
$$

with

$$
\int_{\mathbb{R}^{N}} \psi_{0} Z=0, \chi_{0} \leq 0 .
$$

But the singularity is removable, and this is impossible by the known properties of U.

Q becomes degenerate for some R^{*}

Recall that the Dirichlet problem is nondegenerate for $R \in\left(0, R_{0}\right)$ and Q_{0} is positive semidefinite for $R=R_{0}$.

Therefore the linearized operator becomes degenerate at some $R^{*} \in\left(0, R_{0}\right)$!

Odd multiplicity

By making Fourier decomposition, we write $\psi=\phi_{0}(r)+\sum_{i=1}^{+\infty} \phi_{i}(r) \zeta_{i}(\theta)$, with $r=|x|, \theta=\frac{x}{|x|}$ and ζ_{i} are G-symmetric spherical harmonics. Then,

$$
\begin{gathered}
\phi_{0}(R)=0, \int_{R}^{+\infty} \phi_{0}(r) z_{R}(r) r^{N-1} d r=0 \\
Q(\psi)=\sum_{i=0}^{+\infty} \tilde{Q}_{i}\left(\phi_{i}\right)
\end{gathered}
$$

Odd multiplicity

By making Fourier decomposition, we write $\psi=\phi_{0}(r)+\sum_{i=1}^{+\infty} \phi_{i}(r) \zeta_{i}(\theta)$, with $r=|x|, \theta=\frac{x}{|x|}$ and ζ_{i} are G-symmetric spherical harmonics. Then,

$$
\begin{gathered}
\phi_{0}(R)=0, \int_{R}^{+\infty} \phi_{0}(r) z_{R}(r) r^{N-1} d r=0 \\
Q(\psi)=\sum_{i=0}^{+\infty} \tilde{Q}_{i}\left(\phi_{i}\right)
\end{gathered}
$$

with

$$
\begin{gathered}
\tilde{Q}_{0}(\phi)=\int_{R}^{+\infty}\left(\phi^{\prime}(r)^{2}+\phi(r)^{2}-p u_{R}(r)^{p-1} \phi(r)^{2}\right) r^{N-1} d r-(N-1) R^{N-2} \phi(R)^{2} \\
\tilde{Q}_{i}\left(\phi_{i}\right)=\tilde{Q}_{0}\left(\phi_{i}\right)+\tilde{\mu}_{i} \int_{R}^{+\infty} \phi_{i}(r)^{2} r^{N-3}
\end{gathered}
$$

End of the proof

(1) \tilde{Q}_{0} is positive definite.

End of the proof

(1) \tilde{Q}_{0} is positive definite.
(2) \tilde{Q}_{1} is degenerate for $R=R^{*}$, with 1-D kernel.
(3) \tilde{Q}_{i} are positive definite, $i>1$.

End of the proof

(1) \tilde{Q}_{0} is positive definite.
(2) \tilde{Q}_{1} is degenerate for $R=R^{*}$, with 1-D kernel.
(3) \tilde{Q}_{i} are positive definite, $i>1$.
(4) Hence Q is degenerate with kernel of dimension $\tilde{m_{1}}$ (odd by assumption).

This allows us to use the local bifurcation theorem of Krasnoselskii.

Thank you for your attention!

