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The problem

We say that a smooth domain Ω ⊂ RN is extremal if the following problem
admits a bounded solution:

∆u + f (u) = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,
∂u
∂ν

= c < 0 on ∂Ω .

(1)

Here ν(x) is the exterior normal vector to ∂Ω at x, and f is a Lipschitz function.

Extremal domains arise naturally in many different problems: shape
optimization, free boundary problems and obstacle problems.

If Ω is a bounded extremal domain, then it is a ball and u is radially symmetric.

J. Serrin, 1971.
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The BCN Conjecture

The case of unbounded domains was first treated by Berestycki, Caffarelli
and Nirenberg in 1997.

They show that the domain must be a half-plane under assumptions of
asymptotic flatness of the domain.

In that paper they proposed the following conjecture:

If Ω is a extremal domain and Rn\Ω is connected, then Ω is either a ball
Bn, a half-space, a generalized cylinder Bk × Rn−k, or the complement of
one of them.

H. Berestycki, L. Caffarelli and L. Nirenberg, 1997.
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The BCN conjecture is false for N ≥ 3!

This conjecture was disproved for N ≥ 3 by P. Sicbaldi: he builds extremal
domains obtained as a periodic perturbation of a cylinder (for f (t) = λt).

P. Sicbaldi, 2010.

F. Schlenk and P. Sicbaldi, 2011

This construction works also for N = 2, but in this case R2 \ Ω is not
connected.
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Overdetermined problems and CMC surfaces

A formal analogy with constant mean curvature surfaces has been observed:

Serrin’s result is the counterpart of Alexandrov’s one on CMC
hypersurfaces.

Sicbaldi example has a natural analogue in the Delaunay CMC surface.

Other extremal domains have been built for f of Allen-Cahn type
(f (u) = u− u3), with

∂Ω close to a dilated embedded minimal surface in R3 with finite total
curvature and nondegenerate.

∂Ω close to a dilated Delaunay surface in R3.

M. Del Pino, F. Pacard and J. Wei, 2015.



The problem The two dimensional case Exterior domains

Overdetermined problems and CMC surfaces

A formal analogy with constant mean curvature surfaces has been observed:

Serrin’s result is the counterpart of Alexandrov’s one on CMC
hypersurfaces.

Sicbaldi example has a natural analogue in the Delaunay CMC surface.

Other extremal domains have been built for f of Allen-Cahn type
(f (u) = u− u3), with

∂Ω close to a dilated embedded minimal surface in R3 with finite total
curvature and nondegenerate.

∂Ω close to a dilated Delaunay surface in R3.

M. Del Pino, F. Pacard and J. Wei, 2015.



The problem The two dimensional case Exterior domains

Overdetermined problems and the De Giorgi
conjecture

The case of nonlinearities of Allen-Cahn type has been considered in many
papers, in relation with the well-known De Giorgi conjecture.

H. Berestycki, L. Caffarelli and L. Nirenberg, 1997.

A. Farina and E. Valdinoci, 2010.

A extremal domain has been built with boundary close to the Bombieri-De
Giorgi-Giusti minimal graph if N = 9. In this example, u is monotone.

M. Del Pino, F. Pacard and J. Wei, 2015.

These solutions do not exist if N ≤ 8.

K. Wang and J. Wei, 2017.
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Other cases have been studied recently:

1 The harmonic case f = 0: Alt, Caffarelli, Hauswirth, Helein, Pacard,
Traizet, Jerison, Savin, Kamburov, De Silva, Liu, Wang, Wei...

2 Overdetermined problems on manifolds: Espinar, Farina, Mazet, Mao,
Fall, Sicbaldi...
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The BCN conjecture in dimension 2

In case N = 2, there are some previous results:

If u is monotone and ∇u is bounded, then Ω is a half-plane.

A. Farina and E. Valdinoci, 2010.

If Ω is contained in a half-plane and ∇u is bounded, then the BCN
conjecture holds.

A. Ros and P. Sicbaldi, 2013.

If ∂Ω is a graph and f is of Allen-Cahn type, then Ω is a half-plane.

K. Wang and J. Wei, preprint.

If u is a stable solution (in a certain sense), then Ω is a half-plane.

K. Wang, preprint.



The problem The two dimensional case Exterior domains

A rigidity result in dimension 2

Theorem
If N = 2 and ∂Ω is connected and unbounded, then Ω is a half-plane.

A. Ros, D.R and P. Sicbaldi, 2017.
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Exterior domains

The only remaining case in dimension 2 is that of exterior domains.

Under some restrictions on f and/or u, a exterior extremal domain must be
the exterior of a ball:

A. Aftalion and J. Busca, 1998.

W. Reichel, 1997.

B. Sirakov, 2001.

For instance, the conjecture is true for exterior domains if f (u) = u− u3, or if
f = 0.

All those results are based on the moving plane technique from infinity.
Hence the solution is radially symmetric and monotone along the radius.
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Exterior domains

Our initial observation is: there are radial solutions which are not monotone!
Indeed, for any p > 1, the Nonlinear Schrödinger equation:{

−∆u + u− up = 0, u > 0 in Bc
R,

u = 0 on ∂BR,
(2)

admits nonmonotone radial solutions for any R > 0.

We will use these solutions to build a counterexample to the BCN conjecture
by a local bifurcation argument.
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A counterexample in exterior domains

Theorem

Let N ∈ N, N ≥ 2, p ∈ (1, N+2
N−2 ). Then there exist bounded domains D different

from a ball such that the overdetermined problem:
−∆u + u− up = 0, u > 0 in Dc,
u = 0 on ∂D,
∂u
∂ν

= cte on ∂D,
(3)

admits a bounded solution.

In particular, we answer negatively to the BCN conjecture for N = 2.

The hypothesis “∂Ω unbounded” is essential in our previous work.

Those solutions are unstable.
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We need symmetry!
We denote by µi = i(i + N − 2) the eigenvalues of ∆SN−1 , and µ̃i the subset of
eigenvalues for G-symmetric eigenfunctions.

We choose a symmetry group G ⊂ O(N), so that:

1 µ̃1 > µ1. In particular, G excludes the effect of translations.
2 Its multiplicity m̃1 is odd.

Some examples:

If G = O(m)× O(N − m), µ̃1 = µ2 and m̃1 = 1.

If N = 2 and G is the dihedral group Dk, then µ̃1 = µk and m̃1 = 1.

If N = 3 we can take G as the group of isometries of:

the tetrahedron (µ̃1 = µ3 and m̃1 = 1),
the octahedron (µ̃1 = µ4 and m̃1 = 1),
the icosahedron (µ̃1 = µ6 and m̃1 = 1).

O. Laporte, 1948.
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Known facts about the Dirichlet problem

Denote by BR the ball of radius R. Then, the problem{
−∆u + u− up = 0, u > 0 in Bc

R,
u = 0 on ∂BR,

(4)

admits a unique radial solution uR for any p > 1.

Moreover, uR is nondegenerate and has Morse index 1 in the radial setting.
In other words, the eigenvalue problem{

−∆φ+ φ− pup−1
R φ = τφ in Bc

R,
φ = 0 on ∂BR.

(5)

has no 0 eigenvalue and just one negative one in H1
0,r(Bc

R).

We denote zR ∈ H1
0,r(Bc

R) the eigenfunction with negative eigenvalue.

P. Felmer, S. Martínez and K. Tanaka, 2008.

M. Tang, 2003.
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Do we still have nondegeneracy if we drop radial symmetry?

The answer is no. Indeed, one can show that

i(uR)→ +∞ as R→ +∞,

where i(uR) denotes its Morse index in H1
0,G(Bc

R).

Lemma
The Dirichlet problem is nondegenerate in H1

0,G(Bc
R) for small R.

The proof of this Lemma is postponed.

Then the Dirichlet problem is nondegenerate for R ∈ (0,R0), where R0 is the
maximal value for that.
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The nonlinear Dirichlet-to-Neumann operator

Fix R ∈ (0,R0). Given a function w : SN−1 7−→ (0,∞), let us denote Bw its
radial graph,

Bw :=
{

x ∈ RN |x| < w(x/|x|)
}
.
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By the Inverse Function Theorem, for all v ∈ C2,α
G (SN−1) small, there exists a

positive solution u = u(R, v) to the problem −∆u + u− up = 0 in Bc
R+v

u = 0 on ∂BR+v .

We define the Dirichlet-to-Neumann operator:

F(R, v) =
∂u
∂ν
− 1
|∂BR+v|

∫
∂BR+v

∂u
∂ν

dx,

Clearly, we are done if we prove the existence of nontrivial solutions of the
equation F(R, v) = 0. From now on, we assume that v has 0 mean.

A necessary condition for bifurcation is that DvF(R, 0) becomes degenerate.
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Degeneracy of the linearized operator

DvF(R, 0) is degenerate at a point (R, 0) if there exists ψ 6= 0 such that:{
−∆ψ + ψ − pup−1

R ψ = 0 in Bc
R,

∂ψ
∂ν

(x)− N−1
R ψ(x) = 0 on ∂BR,

(6)

with ∫
∂BR

ψ = 0.

Multiplying by z and integrating by parts,

∫
Bc

R

ψzR = 0.
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The quadratic form
The associated quadratic form is Q = QR : E → R,

Q(ψ) =

∫
Bc

R

(
|∇ψ|2 + ψ2 − pup−1

R ψ2
)
− N − 1

R

∫
∂BR

ψ2,

E =

{
ψ ∈ H1

G(Bc
R),

∫
∂BR

ψ = 0,
∫

Bc
R

ψzR = 0

}
.

Let us denote Q0 = Q|E0 the quadratic form of the Dirichlet problem,

E0 =

{
ψ ∈ H1

0,G(Bc
R),

∫
Bc

R

ψzR = 0

}
.

Proposition
If R is sufficiently small, then Q is positive definite in E.

This result gives us a spectral gap where there is no bifurcation.
Moreover, it shows that the Dirichlet problem is nondegenerate for small R.
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Sketch of the proof

The proof is by contradiction; take R = Rn → 0, Bn = BRn , un = uRn and
zn = zRn .

We first prove that un → U and zn → Z in H1 sense, where U is the
groundstate of:

−∆U + U = Up in RN ,

and Z is the positive radial solution of

−∆Z + Z − pUp−1Z = τZ in RN ,

with τ < 0. This is the only point where the assumption p < N+2
N−2 is required.
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Assume by contradiction that there exist normalized solutions ψn ∈ E of:{
−∆ψn + ψn − pup−1

n ψ = χnψ in Bc
n,

∂ψn
∂η
− N−1

Rn
ψn = 0 on ∂Bn,

with χn ≤ 0.

Hence there exists ψ0 ∈ H1(RN) such that ψn ⇀ ψ0 in H1(Bc
r), for any r > 0.

ψ0 6= 0?
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Recall the expression of the quadratic form:

Q(ψ) =

∫
Bc

R

(
|∇ψ|2 + ψ2 − pup−1

R ψ2
)
− N − 1

R

∫
∂BR

ψ2,

We need to control the boundary term with the Dirichlet energy:

Lemma
The following inequality holds:

1
R

∫
∂BR

ψ2 ≤ 1
N

∫
Bc

R

|∇ψ|2,

for any ψ ∈ H1
G(Bc

R) with
∫
∂BR

ψ = 0.

Here the G-symmetry is needed!
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In the limit, ψ0 6= 0 is a solution of:

−∆ψ0 + ψ0 − pUp−1ψ0 = χ0ψ0 in RN \ {0},

with ∫
RN
ψ0Z = 0, χ0 ≤ 0.

But the singularity is removable, and this is impossible by the known
properties of U.



The problem The two dimensional case Exterior domains

Q becomes degenerate for some R∗

Recall that the Dirichlet problem is nondegenerate for R ∈ (0,R0) and Q0 is
positive semidefinite for R = R0.

R0R*

λ1(Q0)

λ1(Q)

Therefore the linearized operator becomes degenerate at some R∗ ∈ (0,R0)!
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Odd multiplicity

By making Fourier decomposition, we write ψ = φ0(r) +
∑+∞

i=1 φi(r)ζi(θ), with
r = |x|, θ = x

|x| and ζi are G−symmetric spherical harmonics.Then,

φ0(R) = 0,
∫ +∞

R
φ0(r)zR(r)rN−1 dr = 0,

Q(ψ) =

+∞∑
i=0

Q̃i(φi),

with

Q̃0(φ) =

∫ +∞

R
(φ′(r)2 + φ(r)2 − puR(r)p−1φ(r)2)rN−1 dr − (N − 1)RN−2φ(R)2,

Q̃i(φi) = Q̃0(φi) + µ̃i

∫ +∞

R
φi(r)2rN−3.
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End of the proof

1 Q̃0 is positive definite.

2 Q̃1 is degenerate for R = R∗, with 1-D kernel.
3 Q̃i are positive definite, i > 1.
4 Hence Q is degenerate with kernel of dimension m̃1 (odd by

assumption).

This allows us to use the local bifurcation theorem of Krasnoselskii.
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Thank you for your attention!
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